Macrophage Colony Stimulating Factor Derived from CD4+ T Cells Contributes to Control of a Blood-Borne Infection
نویسندگان
چکیده
Dynamic regulation of leukocyte population size and activation state is crucial for an effective immune response. In malaria, Plasmodium parasites elicit robust host expansion of macrophages and monocytes, but the underlying mechanisms remain unclear. Here we show that myeloid expansion during P. chabaudi infection is dependent upon both CD4+ T cells and the cytokine Macrophage Colony Stimulating Factor (MCSF). Single-cell RNA-Seq analysis on antigen-experienced T cells revealed robust expression of Csf1, the gene encoding MCSF, in a sub-population of CD4+ T cells with distinct transcriptional and surface phenotypes. Selective deletion of Csf1 in CD4+ cells during P. chabaudi infection diminished proliferation and activation of certain myeloid subsets, most notably lymph node-resident CD169+ macrophages, and resulted in increased parasite burden and impaired recovery of infected mice. Depletion of CD169+ macrophages during infection also led to increased parasitemia and significant host mortality, confirming a previously unappreciated role for these cells in control of P. chabaudi. This work establishes the CD4+ T cell as a physiologically relevant source of MCSF in vivo; probes the complexity of the CD4+ T cell response during type 1 infection; and delineates a novel mechanism by which T helper cells regulate myeloid cells to limit growth of a blood-borne intracellular pathogen.
منابع مشابه
Correction: Macrophage Colony Stimulating Factor Derived from CD4+ T Cells Contributes to Control of a Blood-Borne Infection
[This corrects the article DOI: 10.1371/journal.ppat.1006046.].
متن کاملAdvances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملThe Role of Porcine Monocyte Derived Dendritic Cells (MoDC) in the Inflammation Storm Caused by Streptococcus suis Serotype 2 Infection
BACKGROUND Streptococcus suis is an important swine pathogen and zoonotic agent. Infection with this highly pathogenic strain can cause streptococcal toxic shock-like syndrome (STSLS), characterized by a Th-1 inflammatory cytokine storm, and a high mortality rate. Monocyte derived dendritic cells (MoDCs) are known to stimulate Th-1 cell differentiation, but the role of MoDCs in STSLS remains to...
متن کاملThe Effect of Beta Interferon on Dendritic Cells and Cytokine Synthesis by CD4+ T Cells
Background: Dendritic cells (DC) are a key regulator of the immune response, and interferon- beta (IFN-β) is considered an immunomodulatory molecule for DC. Objective: The purpose of this study was to evaluate the ability of IFN-β treated DC to induce cytokine secretion by CD4+ T cells. Methods: Dendritic cells were generated from blood monocytes with granulocyte-monocyte colony-stimulating fac...
متن کاملHuman granulocyte-macrophage colony-stimulating factor (hGM-CSF) induces inhibition of intrathymic T-cell development in hGM-CSF receptor transgenic mice.
Thymocytes show differential cytokine responses, depending on the stage of differentiation. Whether these responses are due to preferential cytokine receptor expression or due to downstream signaling mechanisms is unknown. In this study, we examined the relationship between receptor expression and T-cell proliferation or differentiation using thymocytes from transgenic mice constitutively expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2016